Tree Languages Defined in First-Order Logic with One Quantifier Alternation

نویسندگان

  • Mikolaj Bojanczyk
  • Luc Segoufin
چکیده

We study tree languages that can be defined in ∆2. These are tree languages definable by a first-order formula whose quantifier prefix is ∃ ∗ ∀ ∗, and simultaneously by a first-order formula whose quantifier prefix is ∀∗∃∗, both formulas over the signature with the descendant relation. We provide an effective characterization of tree languages definable in ∆2. This characterization is in terms of algebraic equations. Over words, the class of word languages definable in ∆2 forms a robust class, which was given an effective algebraic characterization by Pin and Weil [11].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A The Tale of the Quantifier Alternation Hierarchy of First-Order Logic over Words

In other words, we ask whether the input language belongs to the class of languages defined by the logic, hence the name of the problem: the F-membership problem. Having an F-membership algorithm in hand amounts to having an effective description of all regular properties that F can express. This is why obtaining a membership algorithm is viewed as the goal to strive for when trying to get a pr...

متن کامل

Alternating Regular Tree Grammars in the Framework of Lattice-Valued Logic

In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued)  regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...

متن کامل

On FO2 Quantifier Alternation over Words

We show that each level of the quantifier alternation hierarchy within FO[<] on words is a variety of languages. We use the notion of condensed rankers, a refinement of the rankers defined by Weis and Immerman, to produce a decidable hierarchy of varieties which is interwoven with the quantifier alternation hierarchy – and conjecturally equal to it. It follows that the latter hierarchy is decid...

متن کامل

Quantifier Alternation in Two-Variable First-Order Logic with Successor Is Decidable

We consider the quantifier alternation hierarchy within two-variable first-order logic FO2[<, suc] over finite words with linear order and binary successor predicate. We give a single identity of omega-terms for each level of this hierarchy. This shows that for a given regular language and a non-negative integer m it is decidable whether the language is definable by a formula in FO2[<, suc] whi...

متن کامل

Decidable Properties of Tree Languages

The first part of the thesis concerns problems related to the question: " when can a regular tree language be defined in first-order logic? " Characterizations in terms of automata of first-order logic and the related chain logic are presented. A decidable property of tree automata called confusion is introduced; it is conjectured that a regular tree language can be defined in chain logic if an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008